A novel method for predicting DNA N4-methylcytosine sites based on deep forest algorithm

Author:

Zhang Yonglin1,Hu Mei2,Mo Qi2,Gan Wenli2,Luo Jiesi2

Affiliation:

1. Department of Pharmacy, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China

2. Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou 646000, P. R. China

Abstract

N4-methyladenosine (4mC) methylation is an essential epigenetic modification of deoxyribonucleic acid (DNA) that plays a key role in many biological processes such as gene expression, gene replication and transcriptional regulation. Genome-wide identification and analysis of the 4mC sites can better reveal the epigenetic mechanisms that regulate various biological processes. Although some high-throughput genomic experimental methods can effectively facilitate the identification in a genome-wide scale, they are still too expensive and laborious for routine use. Computational methods can compensate for these disadvantages, but they still leave much room for performance improvement. In this study, we develop a non-NN-style deep learning-based approach for accurately predicting 4mC sites from genomic DNA sequence. We generate various informative features represented sequence fragments around 4mC sites, and subsequently implement them into a deep forest (DF) model. After training the deep model using 10-fold cross-validation, the overall accuracies of 85.0%, 90.0%, and 87.8% were achieved for three representative model organisms, A. thaliana, C. elegans, and D. melanogaster, respectively. In addition, extensive experiment results show that our proposed approach outperforms other existing state-of-the-art predictors in the 4mC identification. Our approach stands for the first DF-based algorithm for the prediction of 4mC sites, providing a novel idea in this field.

Funder

National Natural Science Foundation of China

Luzhou Science and Technology Bureau

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3