WAVE PACKET MOTIONS COUPLED TO ELECTRON TRANSFER IN REACTION CENTERS OF CHLOROFLEXUS AURANTIACUS

Author:

YAKOVLEV ANDREI G.1,SHKUROPATOVA TATIANA A.2,VASILIEVA LYUDMILA G.3,YA. SHKUROPATOV ANATOLI3,SHUVALOV VLADIMIR A.13

Affiliation:

1. Department of Photobiophysics, Belozersky Institute of Chemical and Physical Biology, Moscow State University, Moscow 119991, Russian Federation

2. Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands

3. Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation

Abstract

Transient absorption difference spectroscopy with ~20 femtosecond (fs) resolution was applied to study the time and spectral evolution of low-temperature (90 K) absorbance changes in isolated reaction centers (RCs) of Chloroflexus (C.) aurantiacus. In RCs, the composition of the B-branch chromophores is different with respect to that of purple bacterial RCs by occupying the BB binding site of accessory bacteriochlorophyll by bacteriopheophytin molecule (ΦB). It was found that the nuclear wave packet motion induced on the potential energy surface of the excited state of the primary electron donor P* by ~20 fs excitation leads to a coherent formation of the states [Formula: see text] and [Formula: see text] (BA is a bacteriochlorophyll monomer in the A-branch of cofactors). The processes were studied by measuring coherent oscillations in kinetics of the absorbance changes at 900 nm and 940 nm (P* stimulated emission), at 750 nm and 785 nm (ΦB absorption bands), and at 1,020–1028 nm ([Formula: see text] absorption band). In RCs, the immediate bleaching of the P band at 880 nm and the appearance of the stimulated wave packet emission at 900 nm were accompanied (with a small delay of 10–20 fs) by electron transfer from P* to the B-branch with bleaching of the ΦB absorption band at 785 nm due to [Formula: see text] formation. These data are consistent with recent measurements for the mutant HM182L Rb. sphaeroides RCs (Yakovlev et al., Biochim Biophys Acta1757:369–379, 2006). Only at a delay of 120 fs was the electron transfer from P* to the A-branch observed with a development of the [Formula: see text] absorption band at 1028 nm. This development was in phase with the appearance of the P* stimulated emission at 940 nm. The data on the A-branch electron transfer in C. aurantiacus RCs are consistent with those observed in native RCs of Rb. sphaeroides. The mechanism of charge separation in RCs with the modified B-branch pigment composition is discussed in terms of coupling between the nuclear wave packet motion and electron transfer from P* to ΦB and BA primary acceptors in the B-branch and A-branch, respectively.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Reference87 articles.

1. X-ray structure analysis of a membrane protein complex

2. Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors.

3. Electron Transfer and Charge Recombination Reactions in Wild-Type and Mutant Bacterial Reaction Centers

4. N. W. Woodbury and J. P. Allen, Anoxygenic Photosynthetic Bacteria, eds. R. E. Blankenship, M. T. Madigan and C. E. Bauer (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995) pp. 527–557.

5. Coupling of nuclear wavepacket motion and charge separation in bacterial reaction centers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3