Affiliation:
1. Machine Intelligence Unit, Indian Statistical Institute, 103 B.T. Road, Kolkata-700108, India
Abstract
Prediction of effector proteins is of paramount importance due to their crucial role as first-line invaders while establishing a pathogen-host interaction, often leading to infection of the host. Prediction of T6 effector proteins is a new challenge since the discovery of T6 Secretion System and the unique nature of the particular secretion system. In this paper, we have first designed a Python-based standalone tool, called PyPredT6, to predict T6 effector proteins. A total of 873 unique features has been extracted from the peptide and nucleotide sequences of the experimentally verified effector proteins. Based on these features and using machine learning algorithms, we have performed in silico prediction of T6 effector proteins in Vibrio cholerae and Yersinia pestis to establish the applicability of PyPredT6. PyPredT6 is available at http://projectphd.droppages.com/PyPredT6.html .
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Molecular Biology,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献