PyPredT6: A python-based prediction tool for identification of Type VI effector proteins

Author:

Sen Rishika1,Nayak Losiana1,De Rajat K.1ORCID

Affiliation:

1. Machine Intelligence Unit, Indian Statistical Institute, 103 B.T. Road, Kolkata-700108, India

Abstract

Prediction of effector proteins is of paramount importance due to their crucial role as first-line invaders while establishing a pathogen-host interaction, often leading to infection of the host. Prediction of T6 effector proteins is a new challenge since the discovery of T6 Secretion System and the unique nature of the particular secretion system. In this paper, we have first designed a Python-based standalone tool, called PyPredT6, to predict T6 effector proteins. A total of 873 unique features has been extracted from the peptide and nucleotide sequences of the experimentally verified effector proteins. Based on these features and using machine learning algorithms, we have performed in silico prediction of T6 effector proteins in Vibrio cholerae and Yersinia pestis to establish the applicability of PyPredT6. PyPredT6 is available at http://projectphd.droppages.com/PyPredT6.html .

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3