RNAknot: A new algorithm for RNA secondary structure prediction based on genetic algorithm and GRASP method

Author:

El Fatmi Abdelhakim1ORCID,Bekri M. Ali1,Benhlima Said1

Affiliation:

1. Computer Science Department, MACS Lab, Faculty of Science, Moulay Ismail University, Meknes, BP 11201, Morocco

Abstract

The prediction of the optimal secondary structure for a given RNA sequence represents a challenging computational problem in bioinformatics. This challenge becomes harder especially with the discovery of different pseudoknot classes, which is a complex topology that plays diverse roles in biological processes. Many recent studies have been proposed to predict RNA secondary structure with some pseudoknot classes, but only a few of them have reached satisfying results in terms of both complexity and accuracy. Here we present RNAknot, a new method for predicting RNA secondary structure that contains the following components: stems, hairpin loops, multi-branched loops or multi-loops, bulge loops, and internal loops, in addition to two types of pseudoknots, H-type pseudoknot and Hairpin kissing. RNAknot is based on a genetic algorithm and Greedy Randomized Adaptive Search Procedure (GRASP), and it uses the free energy as fitness function to evaluate the obtained structures. In order to validate the performance of the presented method 131 tests have been performed using two datasets of 26 and 105 RNA sequences, which have been taken from the two data bases RNAstrand and Pseudobase respectively. The obtained results are compared with those of some RNA secondary structure prediction programs such as Vs_subopt, CyloFold, IPknot, Kinefold, RNAstructure, and Sfold. The results of this comparative study show that the prediction accuracy of our proposed approach is significantly improved compared to those obtained by the other programs. For the first dataset, RNAknot has the highest specificity (SP) (71.23%) and sensitivity (SN) (72.15%) averages compared to the other programs. Concerning the second dataset, the RNA secondary structure predictions obtained by the RNAknot correspond to the highest averages of SP (85.49%) and F-measure (79.97%) compared to the other programs. The program is available as a jar file in the link: www.bachmek.umi.ac.ma/wp-content/uploads/RNAknot.0.0.2.rar .

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3