Prediction and validation of avascular tumor growth pattern in different metabolic conditions using in silico and in vitro models

Author:

Heidari Mahshid1ORCID,Kabiri Mahboubeh1

Affiliation:

1. Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran

Abstract

Objectives: In recent years, scientists have taken many efforts for in vitro and in silico modeling of cancerous tumors. In fact, three-dimensional (3D) cultures of multicellular tumor spheroids (MCTSs) are good validators for computational results. The goal of this study is to simulate the 3D early growth of avascular tumors using MCTSs and to compare the in vitro models with the results and predictions of a specific computational modeling framework. Using these two types of models, the importance of metabolic condition on tumor growth behavior and necrosis could be predicted. Materials and methods: We took advantage of a previously developed computational model of tumor growth (constructed by integrating a generic metabolic network model of cancer cells with a multiscale agent-based framework). Among the computational predictions is the importance of glucose accessibility on tumor growth behavior. To study the effect of glucose concentration experimentally, MCTSs were grown in high and low glucose culture media. After that, tumor growth pattern was analyzed by MTT assay, cell counting and propidium iodide (PI) staining. Results: We obviously observed that the rate of necrosis increases and the rate of tumor growth and cell activity decreases as the glucose availability reduces, which is in line with the computational model prediction.

Funder

Iran National Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3