EXHAUSTIVE COMPUTATION OF EXACT DUPLICATIONS VIA SUPER AND NON-NESTED LOCAL MAXIMAL REPEATS

Author:

TAILLEFER EDDY1,MILLER JONATHAN1

Affiliation:

1. Physics and Biology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun 904-0412, Japan

Abstract

We propose and implement a method to obtain all duplicated sequences (repeats) from a chromosome or whole genome. Unlike existing approaches our method makes it possible to simultaneously identify and classify repeats into super, local, and non-nested local maximal repeats. Computation verification demonstrates that maximal repeats for a genome of several gigabases can be identified in a reasonable time, enabling us to identified these maximal repeats for any sequenced genome. The algorithm used for the identification relies on enhanced suffix array data structure to achieve practical space and time efficiency, to identify and classify the maximal repeats, and to perform further post-processing on the identified duplicated sequences. The simplicity and effectiveness of the implementation makes the method readily extendible to more sophisticated computations. Maxmers can be exhaustively accounted for in few minutes for genome sequences of dozen megabases in length and in less than a day or two for genome sequences of few gigabases in length. One application of duplicated sequence identification is to the study of duplicated sequence length distributions, which our found to exhibit for large lengths a persistent power-law behavior. Variation of estimated exponents of this power law are studied among different species and successive assembly release versions of the same species. This makes the characterization of the power-law regime of sequenced genomes via maximal repeats identification and classification, an important task for the derivation of models that would help us to elucidate sequence duplication and genome evolution.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3