A computational model for predicting transmembrane regions of retroviruses

Author:

Liu Ze1,Lv Hongqiang1,Han Jiuqiang1,Liu Ruiling1

Affiliation:

1. School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China

Abstract

Transmembrane region (TR) is a conserved region of transmembrane (TM) subunit in envelope (env) glycoprotein of retrovirus. Evidences have shown that TR is responsible for anchoring the env glycoprotein on the lipid bilayer and substitution of the TR for a covalently linked lipid anchor abrogates fusion. However, universal software could not achieve sufficient accuracy as TM in env also has several motifs such as signal peptide, fusion peptide and immunosuppressive domain composed largely of hydrophobic residues. In this paper, a support vector machine-based (SVM) model is proposed to identify TRs in retroviruses. Firstly, physicochemical and evolutionary information properties were extracted as original features. And then, the feature importance was analyzed by minimum Redundancy Maximum Relevance (mRMR) feature selection criterion. Our model achieved an Sn of 0.955, Sp of 0.998, ACC of 0.995, MCC of 0.954 using 10-fold cross-validation on the training dataset. These results suggest that the proposed model can be used to predict TRs in non-annotation retroviruses and 11917, 3344, 2, 289 and 6 new putative TRs were found in HERV, HIV, HTLV, SIV, MLV, respectively.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Support Vector Machines in Viral Biology;Global Virology III: Virology in the 21st Century;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3