A symmetry-inclusive algebraic approach to genome rearrangement

Author:

Terauds Venta1,Stevenson Joshua1,Sumner Jeremy1

Affiliation:

1. Discipline of Mathematics, University of Tasmania, Private Bag 37, Sandy Bay, Tasmania 7001, Australia

Abstract

Of the many modern approaches to calculating evolutionary distance via models of genome rearrangement, most are tied to a particular set of genomic modeling assumptions and to a restricted class of allowed rearrangements. The “position paradigm”, in which genomes are represented as permutations signifying the position (and orientation) of each region, enables a refined model-based approach, where one can select biologically plausible rearrangements and assign to them relative probabilities/costs. Here, one must further incorporate any underlying structural symmetry of the genomes into the calculations and ensure that this symmetry is reflected in the model. In our recently-introduced framework of genome algebras, each genome corresponds to an element that simultaneously incorporates all of its inherent physical symmetries. The representation theory of these algebras then provides a natural model of evolution via rearrangement as a Markov chain. Whilst the implementation of this framework to calculate distances for genomes with “practical” numbers of regions is currently computationally infeasible, we consider it to be a significant theoretical advance: one can incorporate different genomic modeling assumptions, calculate various genomic distances, and compare the results under different rearrangement models. The aim of this paper is to demonstrate some of these features.

Funder

Australian Research Council Discovery

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rearrangement Events on Circular Genomes;Bulletin of Mathematical Biology;2023-09-25

2. A new algebraic approach to genome rearrangement models;Journal of Mathematical Biology;2022-05

3. Introduction to the Special Issue of the 18th Annual International RECOMB Satellite Workshop on Comparative Genomics;Journal of Bioinformatics and Computational Biology;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3