Metatox - Web application for generation of metabolic pathways and toxicity estimation

Author:

Rudik Anastasiya1ORCID,Bezhentsev Vladislav1,Dmitriev Alexander1,Lagunin Alexey12,Filimonov Dmitry1,Poroikov Vladimir1

Affiliation:

1. Department of Bioinformatics, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, Moscow 119121, Russia

2. Medico-Biological Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997, Russia

Abstract

Xenobiotics biotransformation in humans is a process of the chemical modifications, which may lead to the formation of toxic metabolites. The prediction of such metabolites is very important for drug development and ecotoxicology studies. We created the web-application MetaTox ( http://way2drug.com/mg ) for the generation of xenobiotics metabolic pathways in the human organism. For each generated metabolite, the estimations of the acute toxicity (based on GUSAR software prediction), organ-specific carcinogenicity and adverse effects (based on PASS software prediction) are performed. Generation of metabolites by MetaTox is based on the fragments datasets, which describe transformations of substrates structures to a metabolites structure. We added three new classes of biotransformation reactions: Dehydrogenation, Glutathionation, and Hydrolysis, and now metabolite generation for 15 most frequent classes of xenobiotic’s biotransformation reactions are available. MetaTox calculates the probability of formation of generated metabolite — it is the integrated assessment of the biotransformation reactions probabilities and their sites using the algorithm of PASS ( http://way2drug.com/passonline ). The prediction accuracy estimated by the leave-one-out cross-validation (LOO-CV) procedure calculated separately for the probabilities of biotransformation reactions and their sites is about 0.9 on the average for all reactions.

Funder

Russian Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3