ProgSIO-MSA: Progressive-based single iterative optimization framework for multiple sequence alignment using an effective scoring system

Author:

Bankapur Sanjay1ORCID,Patil Nagamma1

Affiliation:

1. Department of Information Technology, National Institute of Technology Karnataka, Surathkal, Manglore 575025, Karnataka, India

Abstract

Aligning more than two biological sequences is termed multiple sequence alignment (MSA). To analyze biological sequences, MSA is one of the primary activities with potential applications in phylogenetics, homology markers, protein structure prediction, gene regulation, and drug discovery. MSA problem is considered as NP-complete. Moreover, with the advancement of Next-Generation Sequencing techniques, all the gene and protein databases are consistently loaded with a vast amount of raw sequence data which are neither analyzed nor annotated. To analyze these growing volumes of raw sequences, the need of computationally-efficient (polynomial time) models with accurate alignment is high. In this study, a progressive-based alignment model is proposed, named ProgSIO-MSA, which consists of an effective scoring system and an optimization framework. The proposed scoring system aligns sequences effectively using the combination of two scoring strategies, i.e. Look Back Ahead, that scores a residue pair dynamically based on the status information of the previous position to improve the sum-of-pair score, and Position-Residue-Specific Dynamic Gap Penalty, that dynamically penalizes a gap using mutation matrix on the basis of residue and its position information. The proposed single iterative optimization (SIO) framework identifies and optimizes the local optima trap to improve the alignment quality. The proposed model is evaluated against progressive-based state-of-the-art models on two benchmark datasets, i.e. BAliBASE and SABmark. The alignment quality (biological accuracy) of the proposed model is increased by a factor of 17.7% on BAliBASE dataset. The proposed model’s efficiency is compared with state-of-the-art models using time complexity as well as runtime analysis. Wilcoxon signed-rank statistical test results concluded that the quality of the proposed model significantly outperformed progressive-based state-of-the-art models.

Funder

Vision Group on Science and Technology, Govt. of Karnataka, India

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3