Affiliation:
1. Department of Information Technology, National Institute of Technology Karnataka, Surathkal, Manglore 575025, Karnataka, India
Abstract
Aligning more than two biological sequences is termed multiple sequence alignment (MSA). To analyze biological sequences, MSA is one of the primary activities with potential applications in phylogenetics, homology markers, protein structure prediction, gene regulation, and drug discovery. MSA problem is considered as NP-complete. Moreover, with the advancement of Next-Generation Sequencing techniques, all the gene and protein databases are consistently loaded with a vast amount of raw sequence data which are neither analyzed nor annotated. To analyze these growing volumes of raw sequences, the need of computationally-efficient (polynomial time) models with accurate alignment is high. In this study, a progressive-based alignment model is proposed, named ProgSIO-MSA, which consists of an effective scoring system and an optimization framework. The proposed scoring system aligns sequences effectively using the combination of two scoring strategies, i.e. Look Back Ahead, that scores a residue pair dynamically based on the status information of the previous position to improve the sum-of-pair score, and Position-Residue-Specific Dynamic Gap Penalty, that dynamically penalizes a gap using mutation matrix on the basis of residue and its position information. The proposed single iterative optimization (SIO) framework identifies and optimizes the local optima trap to improve the alignment quality. The proposed model is evaluated against progressive-based state-of-the-art models on two benchmark datasets, i.e. BAliBASE and SABmark. The alignment quality (biological accuracy) of the proposed model is increased by a factor of 17.7% on BAliBASE dataset. The proposed model’s efficiency is compared with state-of-the-art models using time complexity as well as runtime analysis. Wilcoxon signed-rank statistical test results concluded that the quality of the proposed model significantly outperformed progressive-based state-of-the-art models.
Funder
Vision Group on Science and Technology, Govt. of Karnataka, India
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Molecular Biology,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献