Affiliation:
1. Institute of Computing, University of Campinas, 1251 Albert Einstein Ave., 13083-852 Campinas, So Paulo, Brazil
2. School of Technology, University of Campinas, 1888 Paschoal Marmo St., 13484-332 Limeira, So Paulo, Brazil
Abstract
In the field of comparative genomics, one way of comparing two genomes is through the analysis of how they distinguish themselves based on a set of mutations called rearrangement events. When considering that genomes undergo different types of rearrangements, it can be assumed that some events are more common than others. To model this assumption, one can assign different weights to different events, where common events tend to cost less than others. However, this approach, called weighted, does not guarantee that the rearrangement assumed to be the most frequent will be also the most frequently returned by proposed algorithms. To overcome this issue, we investigate a new problem where we seek the shortest sequence of rearrangement events able to transform one genome into the other, with a restriction regarding the proportion between the events returned. Here, we consider two rearrangement events: reversal, that inverts the order and the orientation of the genes inside a segment of the genome, and transposition, that moves a segment of the genome to another position. We show the complexity of this problem for any desired proportion considering scenarios where the orientation of the genes is known or unknown. We also develop an approximation algorithm with a constant approximation factor for each scenario and, in particular, we describe an improved (asymptotic) approximation algorithm for the case where the gene orientation is known. At last, we present the experimental tests comparing the proposed algorithms with others from the literature for the version of the problem without the proportion restriction.
Funder
the National Council of Technological and Scientific Development, CNPq
the São Paulo Research Foundation, FAPESP
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Science Applications,Molecular Biology,Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献