Reversals and transpositions distance with proportion restriction

Author:

Brito Klairton Lima1ORCID,Alexandrino Alexsandro Oliveira1,Oliveira Andre Rodrigues1,Dias Ulisses2,Dias Zanoni1

Affiliation:

1. Institute of Computing, University of Campinas, 1251 Albert Einstein Ave., 13083-852 Campinas, So Paulo, Brazil

2. School of Technology, University of Campinas, 1888 Paschoal Marmo St., 13484-332 Limeira, So Paulo, Brazil

Abstract

In the field of comparative genomics, one way of comparing two genomes is through the analysis of how they distinguish themselves based on a set of mutations called rearrangement events. When considering that genomes undergo different types of rearrangements, it can be assumed that some events are more common than others. To model this assumption, one can assign different weights to different events, where common events tend to cost less than others. However, this approach, called weighted, does not guarantee that the rearrangement assumed to be the most frequent will be also the most frequently returned by proposed algorithms. To overcome this issue, we investigate a new problem where we seek the shortest sequence of rearrangement events able to transform one genome into the other, with a restriction regarding the proportion between the events returned. Here, we consider two rearrangement events: reversal, that inverts the order and the orientation of the genes inside a segment of the genome, and transposition, that moves a segment of the genome to another position. We show the complexity of this problem for any desired proportion considering scenarios where the orientation of the genes is known or unknown. We also develop an approximation algorithm with a constant approximation factor for each scenario and, in particular, we describe an improved (asymptotic) approximation algorithm for the case where the gene orientation is known. At last, we present the experimental tests comparing the proposed algorithms with others from the literature for the version of the problem without the proportion restriction.

Funder

the National Council of Technological and Scientific Development, CNPq

the São Paulo Research Foundation, FAPESP

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3