DETERMINING RELEVANT FEATURES TO RECOGNIZE ELECTRON DENSITY PATTERNS IN X-RAY PROTEIN CRYSTALLOGRAPHY

Author:

GOPAL KRESHNA1,ROMO TOD D.2,SACCHETTINI JAMES C.2,IOERGER THOMAS R.1

Affiliation:

1. Department of Computer Science, Texas A&M University, 301 H.R. Bright Building, College Station TX 77843-3112, USA

2. Department of Biochemistry & Biophysics, Texas A&M University, 103 Bio-Bio Building, College Station TX 77843-2128, USA

Abstract

High-throughput computational methods in X-ray protein crystallography are indispensable to meet the goals of structural genomics. In particular, automated interpretation of electron density maps, especially those at mediocre resolution, can significantly speed up the protein structure determination process. TEXTALTM is a software application that uses pattern recognition, case-based reasoning and nearest neighbor learning to produce reasonably refined molecular models, even with average quality data. In this work, we discuss a key issue to enable fast and accurate interpretation of typically noisy electron density data: what features should be used to characterize the density patterns, and how relevant are they? We discuss the challenges of constructing features in this domain, and describe SLIDER, an algorithm to determine the weights of these features. SLIDER searches a space of weights using ranking of matching patterns (relative to mismatching ones) as its evaluation function. Exhaustive search being intractable, SLIDER adopts a greedy approach that judiciously restricts the search space only to weight values that cause the ranking of good matches to change. We show that SLIDER contributes significantly in finding the similarity between density patterns, and discuss the sensitivity of feature relevance to the underlying similarity metric.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3