Robust kernel canonical correlation analysis to detect gene-gene co-associations: A case study in genetics

Author:

Ashad Alam Md.1ORCID,Komori Osamu2,Deng Hong-Wen1,Calhoun Vince D.3,Wang Yu-Ping4

Affiliation:

1. Tulane Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA 70118, USA

2. Department of Computer and Information Science, Seikei University 3-3-1 Kichijojikitamachi, Musashino-shi Tokyo 180-8633 Japan

3. Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA30302, USA

4. Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA

Abstract

The kernel canonical correlation analysis based U-statistic (KCCU) is being used to detect nonlinear gene–gene co-associations. Estimating the variance of the KCCU is however computationally intensive. In addition, the kernel canonical correlation analysis (kernel CCA) is not robust to contaminated data. Using a robust kernel mean element and a robust kernel (cross)-covariance operator potentially enables the use of a robust kernel CCA, which is studied in this paper. We first propose an influence function-based estimator for the variance of the KCCU. We then present a non-parametric robust KCCU, which is designed for dealing with contaminated data. The robust KCCU is less sensitive to noise than KCCU. We investigate the proposed method using both synthesized and real data from the Mind Clinical Imaging Consortium (MCIC). We show through simulation studies that the power of the proposed methods is a monotonically increasing function of sample size, and the robust test statistics bring incremental gains in power. To demonstrate the advantage of the robust kernel CCA, we study MCIC data among 22,442 candidate Schizophrenia genes for gene–gene co-associations. We select 768 genes with strong evidence for shedding light on gene–gene interaction networks for Schizophrenia. By performing gene ontology enrichment analysis, pathway analysis, gene–gene network and other studies, the proposed robust methods can find undiscovered genes in addition to significant gene pairs, and demonstrate superior performance over several of current approaches.

Funder

National Institutes of Health

National Institute of Mental Health

National Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3