PREDICTION OF THE EXPOSURE STATUS OF TRANSMEMBRANE BETA BARREL RESIDUES FROM PROTEIN SEQUENCE

Author:

HAYAT SIKANDER1,WALTER PETER1,PARK YUNGKI1,HELMS VOLKHARD1

Affiliation:

1. Center for Bioinformatics, Saarland University, Germany

Abstract

We present BTMX (Beta barrel TransMembrane eXposure), a computational method to predict the exposure status (i.e. exposed to the bilayer or hidden in the protein structure) of transmembrane residues in transmembrane beta barrel proteins (TMBs). BTMX predicts the exposure status of known TM residues with an accuracy of 84.2% over 2,225 residues and provides a confidence score for all predictions. Predictions made are in concert with the fact that hydrophobic residues tend to be more exposed to the bilayer. The biological relevance of the input parameters is also discussed. The highest prediction accuracy is obtained when a sliding window comprising three residues with similar Cα- Cβvector orientations is employed. The prediction accuracy of the BTMX method on a separate unseen non-redundant test dataset is 78.1%. By employing out-pointing residues that are exposed to the bilayer, we have identified various physico-chemical properties that show statistically significant differences between the beta strands located at the oligomeric interfaces compared to the non-oligomeric strands. The BTMX web server generates colored, annotated snake-plots as part of the prediction results and is available under the BTMX tab at . Exposure status prediction of TMB residues may be useful in 3D structure prediction of TMBs.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3