Identification of potential drug targets for treatment of refractory epilepsy using network pharmacology

Author:

Bezhentsev Vladislav1ORCID,Ivanov Sergey1,Kumar Sandeep2,Goel Rajesh2,Poroikov Vladimir1

Affiliation:

1. Department of Bioinformatics, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, Moscow 119121, Russia

2. Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India

Abstract

Epilepsy is the fourth most common neurological disease after migraine, stroke, and Alzheimer’s disease. Approximately one-third of all epilepsy cases are refractory to the existing anticonvulsants. Thus, there is an unmet need for newer antiepileptic drugs (AEDs) to manage refractory epilepsy (RE). Discovery of novel AEDs for the treatment of RE further retards for want of potential pharmacological targets, unavailable due to unclear etiology of this disease. In this regard, network pharmacology as an area of bioinformatics is gaining popularity. It combines the methods of network biology and polypharmacology, which makes it a promising approach for finding new molecular targets. This work is aimed at discovering new pharmacological targets for the treatment of RE using network pharmacology methods. In the framework of our study, the genes associated with the development of RE were selected based on analysis of available data. The methods of network pharmacology were used to select 83 potential pharmacological targets linked to the selected genes. Then, 10 most promising targets were chosen based on analysis of published data. All selected target proteins participate in biological processes, which are considered to play a key role in the development of RE. For 9 of 10 selected targets, the potential associations with different kinds of epilepsy have been recently mentioned in the literature published, which gives additional evidence that the approach applied is rather promising.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3