CROMqs: An infinitesimal successive refinement lossy compressor for the quality scores

Author:

No Albert1ORCID,Hernaez Mikel2,Ochoa Idoia3

Affiliation:

1. Electronic and Electrical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Korea

2. Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr, Urbana, IL 61801, USA

3. Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1308 W Main Street, Urbana, IL 61801, USA

Abstract

The amount of sequencing data is growing at a fast pace due to a rapid revolution in sequencing technologies. Quality scores, which indicate the reliability of each of the called nucleotides, take a significant portion of the sequencing data. In addition, quality scores are more challenging to compress than nucleotides, and they are often noisy. Hence, a natural solution to further decrease the size of the sequencing data is to apply lossy compression to the quality scores. Lossy compression may result in a loss in precision, however, it has been shown that when operating at some specific rates, lossy compression can achieve performance on variant calling similar to that achieved with the losslessly compressed data (i.e. the original data). We propose Coding with Random Orthogonal Matrices for quality scores (CROMqs), the first lossy compressor designed for the quality scores with the “infinitesimal successive refinability” property. With this property, the encoder needs to compress the data only once, at a high rate, while the decoder can decompress it iteratively. The decoder can reconstruct the set of quality scores at each step with reduced distortion each time. This characteristic is specifically useful in sequencing data compression, since the encoder does not generally know what the most appropriate rate of compression is, e.g. for not degrading variant calling accuracy. CROMqs avoids the need of having to compress the data at multiple rates, hence incurring time savings. In addition to this property, we show that CROMqs obtains a comparable rate-distortion performance to the state-of-the-art lossy compressors. Moreover, we also show that it achieves a comparable performance on variant calling to that of the lossless compressed data while achieving more than 50% reduction in size.

Funder

Chan Zuckerberg Initiative DAF

National Research Foundation of Korea

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3