iAMY-RECMFF: Identifying amyloidgenic peptides by using residue pairwise energy content matrix and features fusion algorithm

Author:

Yu Zizheng1,Yin Zhijian12,Zou Hongliang12ORCID

Affiliation:

1. School of Communications and Electronics Jiangxi, Science and Technology Normal University, Nanchang 330013, P. R. China

2. Jiangxi Engineering Research Center of Unattended Perception System and Artificial Intelligence Technology Jiangxi Science and Technology Normal University, Jiangxi 330088, P. R. China

Abstract

Various diseases, including Huntington’s disease, Alzheimer’s disease, and Parkinson’s disease, have been reported to be linked to amyloid. Therefore, it is crucial to distinguish amyloid from non-amyloid proteins or peptides. While experimental approaches are typically preferred, they are costly and time-consuming. In this study, we have developed a machine learning framework called iAMY-RECMFF to discriminate amyloidgenic from non-amyloidgenic peptides. In our model, we first encoded the peptide sequences using the residue pairwise energy content matrix. We then utilized Pearson’s correlation coefficient and distance correlation to extract useful information from this matrix. Additionally, we employed an improved similarity network fusion algorithm to integrate features from different perspectives. The Fisher approach was adopted to select the optimal feature subset. Finally, the selected features were inputted into a support vector machine for identifying amyloidgenic peptides. Experimental results demonstrate that our proposed method significantly improves the identification of amyloidgenic peptides compared to existing predictors. This suggests that our method may serve as a powerful tool in identifying amyloidgenic peptides. To facilitate academic use, the dataset and codes used in the current study are accessible at https://figshare.com/articles/online_resource/iAMY-RECMFF/22816916 .

Funder

the Youth Project of Jiangxi Education Department

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3