Computational analysis and enzyme assay of inhibitor response to disease single nucleotide polymorphisms (SNPs) in lipoprotein lipase

Author:

He Deyong1,Huang Ling1,Xu Yaping1,Pan Xiaoliang2,Liu Lijun1

Affiliation:

1. School of Chemistry and Chemical Engineering, Jinggangshan, University, No. 28 Xueyuan Road, Ji’an 343009, China

2. School of Mechanical Engineering, Jinggangshan University, No.28 Xueyuan Road, Ji’an 343009, China

Abstract

Lipoprotein lipase (LPL) is the rate-limiting enzyme for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins, chylomicrons, and very low-density lipoproteins. The enzyme has been established as an efficacious and safe therapeutic target for the management of obesity. Here, a systematic profile of the lipase inhibitor response of three anti-obesity agents (Orlistat, Lipstatin, and Cetilistat) to clinical LPL missense mutations arising from disease single nucleotide polymorphisms (SNPs) was established by integrating complex structure modeling, virtual mutagenesis, molecular dynamics (MD) simulations, binding energy analysis, and radiolabeled TG hydrolysis assays. The profile was then used to characterize the resistance and sensitivity of systematic mutation–inhibitor pairs. It is suggested that the Orlistat and Lipstatin have a similar response profile to the investigated mutations due to their homologous chemical structures, but exhibit a distinct profile to that of Cetilistat. Most mutations were predicted to have a modest or moderate effect on inhibitor binding; they are located far away from the enzyme active site and thus can only influence the binding limitedly. A number of mutations were found to sensitize or cause resistance for lipase inhibitors by directly interacting with the inhibitor ligands or by indirectly addressing allosteric effect on enzyme active site. Long-term MD simulations revealed a different noncovalent interaction network at the complex interfaces of Orlistat with wild-type LPL as well as its sensitized mutant H163R and resistant mutant I221T.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Science and Technology Support Program of Jiangxi Province

Teaching Reform Project of Jiangxi Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3