MULTIVARIATE ENTROPY DISTANCE METHOD FOR PROKARYOTIC GENE IDENTIFICATION

Author:

OUYANG ZHENGQING1,ZHU HUAIQIU1,WANG JIN2,SHE ZHEN-SU13

Affiliation:

1. State Key Lab for Turbulence and Complex Systems and Center for Theoretical Biology, Peking University, Beijing 100871, China

2. State Key Lab of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China

3. Department of Mathematics, UCLA, Los Angeles, CA 90095, USA

Abstract

A new simple method is found for efficient and accurate identification of coding sequences in prokaryotic genome. The method employs a Shannon description of artificial language for DNA sequences. It consists in translating a DNA sequence into a pseudo-amino acid sequence with 20 fundamental words according to the universal genetic code. With an entropy-density profile (EDP), the method maps a sequence of finite length to a vector and then analyzes its position in the 20-dimensional phase space depending on its nature. It is found that the ratio of the relative distance to an averaged coding and non-coding EDP over a small number (up to one) of open reading frames (ORFs) can serve as a good coding potential. An iterative algorithm is designed for finding a set of "root" sequences using this coding potential. A multivariate entropy distance (MED) algorithm is then proposed for the identification of prokaryotic genes; it has a feature to combine the use of a coding potential and an EDP-based sequence similarity analysis. The current version of MED is unsupervised, parameter-free and simple to implement. It is demonstrated to be able to detect 95–99% genes with 10–30% of additional genes when tested against the RefSeq database of NCBI and to detect 97.5–99.8% of confirmed genes with known functions. It is also shown to be able to find a set of (functionally known) genes that are missed by other well-known gene finding algorithms. All measurements show that the MED algorithm reaches a similar performance level as the algorithms like GeneMark and Glimmer for prokaryotic gene prediction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3