Affiliation:
1. Department of Statistics, Greater Data Science Lab, Chulalongkorn Business School, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok, Thailand
Abstract
The Cox proportional hazards model has been widely used in cancer genomic research that aims to identify genes from high-dimensional gene expression space associated with the survival time of patients. With the increase in expertly curated biological pathways, it is challenging to incorporate such complex networks in fitting a high-dimensional Cox model. This paper considers a Bayesian framework that employs the Ising prior to capturing relations among genes represented by graphs. A spike-and-slab prior is also assigned to each of the coefficients for the purpose of variable selection. The iterated conditional modes/medians (ICM/M) algorithm is proposed for the implementation for Cox models. The ICM/M estimates hyperparameters using conditional modes and obtains coefficients through conditional medians. This procedure produces some coefficients that are exactly zero, making the model more interpretable. Comparisons of the ICM/M and other regularized Cox models were carried out with both simulated and real data. Compared to lasso, adaptive lasso, elastic net, and DegreeCox, the ICM/M yielded more parsimonious models with consistent variable selection. The ICM/M model also provided a smaller number of false positives than the other methods and showed promising results in terms of predictive accuracy. In terms of computing times among the network-aware methods, the ICM/M algorithm is substantially faster than DegreeCox even when incorporating a large complex network. The implementation of the ICM/M algorithm for Cox regression model is provided in R package icmm, available on the Comprehensive R Archive Network (CRAN).
Publisher
World Scientific Pub Co Pte Ltd
Subject
Computer Science Applications,Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-information Collaborative Model of Urban Public Health Emergency Management Based on Bayesian Algorithm;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29
2. High-Dimensional Survival Analysis: Methods and Applications;Annual Review of Statistics and Its Application;2023-03-10