Extending hidden Markov models to allow conditioning on previous observations

Author:

Tamposis Ioannis A.1,Theodoropoulou Margarita C.1,Tsirigos Konstantinos D.1,Bagos Pantelis G.1ORCID

Affiliation:

1. Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35100 Lamia, Greece

Abstract

Hidden Markov Models (HMMs) are probabilistic models widely used in computational molecular biology. However, the Markovian assumption regarding transition probabilities which dictates that the observed symbol depends only on the current state may not be sufficient for some biological problems. In order to overcome the limitations of the first order HMM, a number of extensions have been proposed in the literature to incorporate past information in HMMs conditioning either on the hidden states, or on the observations, or both. Here, we implement a simple extension of the standard HMM in which the current observed symbol (amino acid residue) depends both on the current state and on a series of observed previous symbols. The major advantage of the method is the simplicity in the implementation, which is achieved by properly transforming the observation sequence, using an extended alphabet. Thus, it can utilize all the available algorithms for the training and decoding of HMMs. We investigated the use of several encoding schemes and performed tests in a number of important biological problems previously studied by our team (prediction of transmembrane proteins and prediction of signal peptides). The evaluation shows that, when enough data are available, the performance increased by 1.8%–8.2% and the existing prediction methods may improve using this approach. The methods, for which the improvement was significant (PRED-TMBB2, PRED-TAT and HMM-TM), are available as web-servers freely accessible to academic users at www.compgen.org/tools/ .

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variance-Reduced Stochastic Optimization for Efficient Inference of Hidden Markov Models;Journal of Computational and Graphical Statistics;2024-06-07

2. Survey Paper on IoT based Intrusion Detection System: Datasets and Techniques;2022 3rd International Conference on Computing, Analytics and Networks (ICAN);2022-11-18

3. TMbed: transmembrane proteins predicted through language model embeddings;BMC Bioinformatics;2022-08-08

4. TMbed – Transmembrane proteins predicted through Language Model embeddings;2022-06-15

5. Hidden Markov models with binary dependence;Physica A: Statistical Mechanics and its Applications;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3