A novel pattern matching algorithm for genomic patterns related to protein motifs

Author:

Foroughmand-Araabi Mohammad-Hadi1,Goliaei Sama2,Goliaei Bahram3

Affiliation:

1. Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

2. Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran

3. Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

Abstract

Background: Patterns on proteins and genomic sequences are vastly analyzed, extracted and collected in databases. Although protein patterns originate from genomic coding regions, very few works have directly or indirectly dealt with coding region patterns induced from protein patterns. Results: In this paper, we have defined a new genomic pattern structure suitable for representing induced patterns from proteins. The provided pattern structure, which is called “Consecutive Positions Scoring Matrix (CPSSM)”, is a replacement for protein patterns and profiles in the genomic context. CPSSMs can be identified, discovered, and searched in genomes. Then, we have presented a novel pattern matching algorithm between the defined genomic pattern and genomic sequences based on dynamic programming. In addition, we have modified the provided algorithm to support intronic gaps and huge sequences. We have implemented and tested the provided algorithm on real data. The results on Saccharomyces cerevisiae’s genome show 132% more true positives and no false negatives and the results on human genome show no false negatives and 10 times as many true positives as those in previous works. Conclusion: CPSSM and provided methods could be used for open reading frame detection and gene finding. The application is available with source codes to run and download at http://app.foroughmand.ir/cpssm/ .

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3