Learning gene regulatory networks using gaussian process emulator and graphical LASSO

Author:

Chatrabgoun H.1,Soltanian A. R.1,Mahjub H.1,Bahreini F.2

Affiliation:

1. Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran

2. Department of Molecular Medicine and Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Large amounts of research efforts have been focused on learning gene regulatory networks (GRNs) based on gene expression data to understand the functional basis of a living organism. Under the assumption that the joint distribution of the gene expressions of interest is a multivariate normal distribution, such networks can be constructed by assessing the nonzero elements of the inverse covariance matrix, the so-called precision matrix or concentration matrix. This may not reflect the true connectivity between genes by considering just pairwise linear correlations. To relax this limitative constraint, we employ Gaussian process (GP) model which is well known as computationally efficient non-parametric Bayesian machine learning technique. GPs are among a class of methods known as kernel machines which can be used to approximate complex problems by tuning their hyperparameters. In fact, GP creates the ability to use the capacity and potential of different kernels in constructing precision matrix and GRNs. In this paper, in the first step, we choose the GP with appropriate kernel to learn the considered GRNs from the observed genetic data, and then we estimate kernel hyperparameters using rule-of-thumb technique. Using these hyperparameters, we can also control the degree of sparseness in the precision matrix. Then we obtain kernel-based precision matrix similar to GLASSO to construct kernel-based GRN. The findings of our research are used to construct GRNs with high performance, for different species of Drosophila fly rather than simply using the assumption of multivariate normal distribution, and the GPs, despite the use of the kernels capacity, have a much better performance than the multivariate Gaussian distribution assumption.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3