KDSNP: A kernel-based approach to detecting high-order SNP interactions

Author:

Kodama Kento1,Saigo Hiroto1

Affiliation:

1. Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan

Abstract

Despite the accumulation of quantitative trait loci (QTL) data in many complex human diseases, most of current approaches that have attempted to relate genotype to phenotype have achieved limited success, and genetic factors of many common diseases are yet remained to be elucidated. One of the reasons that makes this problem complex is the existence of single nucleotide polymorphism (SNP) interaction, or epistasis. Due to excessive amount of computation for searching the combinatorial space, existing approaches cannot fully incorporate high-order SNP interactions into their models, but limit themselves to detecting only lower-order SNP interactions. We present an empirical approach based on ridge regression with polynomial kernels and model selection technique for determining the true degree of epistasis among SNPs. Computer experiments in simulated data show the ability of the proposed method to correctly predict the number of interacting SNPs provided that the number of samples is large enough relative to the number of SNPs. For cases in which the number of the available samples is limited, we propose to perform sliding window approach to ensure sufficiently large sample/SNP ratio in each window. In computational experiments using heterogeneous stock mice data, our approach has successfully detected subregions that harbor known causal SNPs. Our analysis further suggests the existence of additional candidate causal SNPs interacting to each other in the neighborhood of the known causal gene. Software is available from https://github.com/HirotoSaigo/KDSNP .

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3