Constructing gene regulatory networks from microarray data using non-Gaussian pair-copula Bayesian networks

Author:

Chatrabgoun O.1,Hosseinian-Far A.2,Daneshkhah A.3

Affiliation:

1. Department of Statistics, Malayer University, Malayer, Iran

2. Department of Business Systems & Operations, University of Northampton, NN1 5PH, UK

3. Faculty of Engineering, Environment & Computing, Coventry University, CV1 5FB, UK

Abstract

Many biological and biomedical research areas such as drug design require analyzing the Gene Regulatory Networks (GRNs) to provide clear insight and understanding of the cellular processes in live cells. Under normality assumption for the genes, GRNs can be constructed by assessing the nonzero elements of the inverse covariance matrix. Nevertheless, such techniques are unable to deal with non-normality, multi-modality and heavy tailedness that are commonly seen in current massive genetic data. To relax this limitative constraint, one can apply copula function which is a multivariate cumulative distribution function with uniform marginal distribution. However, since the dependency structures of different pairs of genes in a multivariate problem are very different, the regular multivariate copula will not allow for the construction of an appropriate model. The solution to this problem is using Pair-Copula Constructions (PCCs) which are decompositions of a multivariate density into a cascade of bivariate copula, and therefore, assign different bivariate copula function for each local term. In fact, in this paper, we have constructed inverse covariance matrix based on the use of PCCs when the normality assumption can be moderately or severely violated for capturing a wide range of distributional features and complex dependency structure. To learn the non-Gaussian model for the considered GRN with non-Gaussian genomic data, we apply modified version of copula-based PC algorithm in which normality assumption of marginal densities is dropped. This paper also considers the Dynamic Time Warping (DTW) algorithm to determine the existence of a time delay relation between two genes. Breast cancer is one of the most common diseases in the world where GRN analysis of its subtypes is considerably important; Since by revealing the differences in the GRNs of these subtypes, new therapies and drugs can be found. The findings of our research are used to construct GRNs with high performance, for various subtypes of breast cancer rather than simply using previous models.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3