BEYOND COMPARING MEANS: THE USEFULNESS OF ANALYZING INTERINDIVIDUAL VARIATION IN GENE EXPRESSION FOR IDENTIFYING GENES ASSOCIATED WITH CANCER DEVELOPMENT

Author:

GORLOV IVAN P.1,BYUN JINYOUNG1,ZHAO HONGYA1,LOGOTHETIS CHRISTOPHER J.1,GORLOVA OLGA Y.2

Affiliation:

1. Department of Genitourinary Medical Oncology, Unit 1374, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, Texas 77030-3721, USA

2. Department of Epidemiology, Unit 1340, The University of Texas MD Anderson Cancer Center, 1155 Pressler Street, Houston, Texas 77030-3721, USA

Abstract

Identifying genes associated with cancer development is typically accomplished by comparing mean expression values in normal and tumor tissues, which identifies differentially expressed (DE) genes. Interindividual variation (IV) in gene expression is indirectly included in DE gene identification because given the same absolute differences in means, genes with lower variance tend to have lower p-values. We explored the direct use of IV in gene expression to identify candidate genes associated with cancer development. We focused on prostate (PCa) and lung (LC) cancers and compared IV in the expression level of genes shown to be cancer related with that in all other genes in the human genome. Compared with all those other genes, cancer-related genes tended to have greater IV in normal tissues and a greater increase in IV during the transition from normal to tumorous tissue. Genes without significantly different mean expression values between tumor and normal tissues but with greater IV in tumor than in normal tissue (note: the DE-based approach completely ignores those genes) had stronger associations with clinically important features like Gleason score in PCa or tumor histology in LC than all other genes were. Our results suggest that analyzing IV in gene expression level is useful in identifying novel candidate genes associated with cancer development.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3