Measuring consistency among gene set analysis methods: A systematic study

Author:

Maleki Farhad1,Ovens Katie L.1,Hogan Daniel J.1,Rezaei Elham2,Rosenberg Alan M.2,Kusalik Anthony J.1

Affiliation:

1. Department of Computer Science, University of Saskatchewan, 110 Science Place, Saskatoon SK S7N 5C9, Canada

2. Department of Pediatrics, Royal University Hospital, Saskatoon SK S7N OW8, Canada

Abstract

Gene set analysis is a quantitative approach for generating biological insight from gene expression datasets. The abundance of gene set analysis methods speaks to their popularity, but raises the question of the extent to which results are affected by the choice of method. Our systematic analysis of 13 popular methods using 6 different datasets, from both DNA microarray and RNA-Seq origin, shows that this choice matters a great deal. We observed that the overall number of gene sets reported by each method differed by up to 2 orders of magnitude, and there was a bias toward reporting large gene sets with some methods. Furthermore, there was substantial disagreement between the 20 most statistically significant gene sets reported by the methods. This was also observed when expanding to the 100 most statistically significant reported gene sets. For different datasets of the same phenotype/condition, the top 20 and top 100 most significant results also showed little to no agreement even when using the same method. GAGE, PAGE, and ORA were the only methods able to achieve relatively high reproducibility when comparing the 20 and 100 most statistically significant gene sets. Biological validation on a juvenile idiopathic arthritis (JIA) dataset showed wide variation in terms of the relevance of the top 20 and top 100 most significant gene sets to known biology of the disease, where GAGE predicted the most relevant gene sets, followed by GSEA, ORA, and PAGE.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3