Issues in performance evaluation for host–pathogen protein interaction prediction

Author:

Abbasi Wajid Arshad1,Minhas Fayyaz Ul Amir Afsar1

Affiliation:

1. Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan

Abstract

The study of interactions between host and pathogen proteins is important for understanding the underlying mechanisms of infectious diseases and for developing novel therapeutic solutions. Wet-lab techniques for detecting protein–protein interactions (PPIs) can benefit from computational predictions. Machine learning is one of the computational approaches that can assist biologists by predicting promising PPIs. A number of machine learning based methods for predicting host–pathogen interactions (HPI) have been proposed in the literature. The techniques used for assessing the accuracy of such predictors are of critical importance in this domain. In this paper, we question the effectiveness of K-fold cross-validation for estimating the generalization ability of HPI prediction for proteins with no known interactions. K-fold cross-validation does not model this scenario, and we demonstrate a sizable difference between its performance and the performance of an alternative evaluation scheme called leave one pathogen protein out (LOPO) cross-validation. LOPO is more effective in modeling the real world use of HPI predictors, specifically for cases in which no information about the interacting partners of a pathogen protein is available during training. We also point out that currently used metrics such as areas under the precision-recall or receiver operating characteristic curves are not intuitive to biologists and propose simpler and more directly interpretable metrics for this purpose.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3