Flux balance network expansion predicts stage-specific human peri_implantation embryo metabolism

Author:

Dadashi Andisheh1ORCID,Martinez Derek2

Affiliation:

1. Division of Mathematics, Engineering and Computer Science, The University of New Mexico-Valencia, Los Lunas, NM, USA 87031, USA

2. The Science and Wellness Division, The University of New Mexico-Valencia, Los Lunas, NM, USA 87031, USA

Abstract

Metabolism is an essential cellular process for the growth and maintenance of organisms. A better understanding of metabolism during embryogenesis may shed light on the developmental origins of human disease. Metabolic networks, however, are vastly complex with many redundant pathways and interconnected circuits. Thus, computational approaches serve as a practical solution for unraveling the genetic basis of embryo metabolism to help guide future experimental investigations. RNA-sequencing and other profiling technologies make it possible to elucidate metabolic genotype–phenotype relationships and yet our understanding of metabolism is limited. Very few studies have examined the temporal or spatial metabolomics of the human embryo, and prohibitively small sample sizes traditionally observed in human embryo research have presented logistical challenges for metabolic studies, hindering progress towards the reconstruction of the human embryonic metabolome. We employed a network expansion algorithm to evolve the metabolic network of the peri-implantation embryo metabolism and we utilized flux balance analysis (FBA) to examine the viability of the evolved networks. We found that modulating oxygen uptake promotes lactate diffusion across the outer mitochondrial layer, providing in-silico support for a proposed lactate–malate–aspartate shuttle. We developed a stage-specific model to serve as a proof-of-concept for the reconstruction of future metabolic models of development. Our work shows that it is feasible to model human metabolism with respect to time-dependent changes characteristic of peri-implantation development.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3