Network motif-based analysis of regulatory patterns in paralogous gene pairs

Author:

Melkus Gatis1,Rucevskis Peteris1,Celms Edgars1,Čerāns Kārlis1,Freivalds Karlis1,Kikusts Paulis1,Lace Lelde1,Opmanis Mārtiņš1,Rituma Darta1,Viksna Juris1

Affiliation:

1. Institute of Mathematics and Computer Science, University of Latvia, Rainis blvd. 29, Riga, LV-1459, Latvia

Abstract

Current high-throughput experimental techniques make it feasible to infer gene regulatory interactions at the whole-genome level with reasonably good accuracy. Such experimentally inferred regulatory networks have become available for a number of simpler model organisms such as S. cerevisiae, and others. The availability of such networks provides an opportunity to compare gene regulatory processes at the whole genome level, and in particular, to assess similarity of regulatory interactions for homologous gene pairs either from the same or from different species. We present here a new technique for analyzing the regulatory interaction neighborhoods of paralogous gene pairs. Our central focus is the analysis of S. cerevisiae gene interaction graphs, which are of particular interest due to the ancestral whole-genome duplication (WGD) that allows to distinguish between paralogous transcription factors that are traceable to this duplication event and other paralogues. Similar analysis is also applied to E. coli and C. elegans networks. We compare paralogous gene pairs according to the presence and size of bi-fan arrays, classically associated in the literature with gene duplication, within other network motifs. We further extend this framework beyond transcription factor comparison to obtain topology-based similarity metrics based on the overlap of interaction neighborhoods applicable to most genes in a given organism. We observe that our network divergence metrics show considerably larger similarity between paralogues, especially those traceable to WGD. This is the case for both yeast and C. elegans, but not for E. coli regulatory network. While there is no obvious cross-species link between metrics, different classes of paralogues show notable differences in interaction overlap, with traceable duplications tending toward higher overlap compared to genes with shared protein families. Our findings indicate that divergence in paralogous interaction networks reflects a shared genetic origin, and that our approach may be useful for investigating structural similarity in the interaction networks of paralogous genes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3