Mining sponge phenomena in RNA expression data

Author:

Angiulli Fabrizio1,Colombo Teresa2,Fassetti Fabio1ORCID,Furfaro Angelo1,Paci Paola2

Affiliation:

1. DIMES, University of Calabria, Rende (CS), Italy

2. IASI-CNR “Antonio Ruberti”, Roma, Italy

Abstract

In the last few years, the interactions among competing endogenous RNAs (ceRNAs) have been recognized as a key post-transcriptional regulatory mechanism in cell differentiation, tissue development, and disease. Notably, such sponge phenomena substracting active microRNAs from their silencing targets have been recognized as having a potential oncosuppressive, or oncogenic, role in several cancer types. Hence, the ability to predict sponges from the analysis of large expression data sets (e.g. from international cancer projects) has become an important data mining task in bioinformatics. We present a technique designed to mine sponge phenomena whose presence or absence may discriminate between healthy and unhealthy populations of samples in tumoral or normal expression data sets, thus providing lists of candidates potentially relevant in the pathology. With this aim, we search for pairs of elements acting as ceRNA for a given miRNA, namely, we aim at discovering miRNA-RNA pairs involved in phenomena which are clearly present in one population and almost absent in the other one. The results on tumoral expression data, concerning five different cancer types, confirmed the effectiveness of the approach in mining interesting knowledge. Indeed, 32 out of 33 miRNAs and 22 out of 25 protein-coding genes identified as top scoring in our analysis are corroborated by having been similarly associated with cancer processes in independent studies. In fact, the subset of miRNAs selected by the sponge analysis results in a significant enrichment of annotation for the KEGG32 pathway “microRNAs in cancer” when tested with the commonly used bioinformatic resource DAVID. Moreover, often the cancer datasets where our sponge analysis identified a miRNA as top scoring match the one reported already in the pertaining literature.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3