Prediction of adverse drug reactions using drug convolutional neural networks

Author:

Mantripragada Anjani Sankar1,Teja Sai Phani1,Katasani Rohith Reddy1,Joshi Pratik1ORCID,V Masilamani1,Ramesh Raj2

Affiliation:

1. Department of Computer Science and Engineering, IIITDM Kancheepuram, Chennai 600127, India

2. Data Foundry, Bangalore, India

Abstract

Prediction of Adverse Drug Reactions (ADRs) has been an important aspect of Pharmacovigilance because of its impact in the pharma industry. The standard process of introduction of a new drug into a market involves a lot of clinical trials and tests. This is a tedious and time consuming process and also involves a lot of monetary resources. The faster approval of a drug helps the patients who are in need of the drug. The in silico prediction of Adverse Drug Reactions can help speed up the aforementioned process. The challenges involved are lack of negative data present and predicting ADR from just the chemical structure. Although many models are already available to predict ADR, most of the models use biological activities identifiers, chemical and physical properties in addition to chemical structures of the drugs. But for most of the new drugs to be tested, only chemical structures will be available. The performance of the existing models predicting ADR only using chemical structures is not efficient. Therefore, an efficient prediction of ADRs from just the chemical structure has been proposed in this paper. The proposed method involves a separate model for each ADR, making it a binary classification problem. This paper presents a novel CNN model called Drug Convolutional Neural Network (DCNN) to predict ADRs using chemical structures of the drugs. The performance is measured using the metrics such as Accuracy, Recall, Precision, Specificity, F1 score, AUROC and MCC. The results obtained by the proposed DCNN model outperform the competing models on the SIDER4.1 database in terms of all the metrics. A case study has been performed on a COVID-19 recommended drugs, where the proposed model predicted the ADRs that are well aligned with the observations made by medical professionals using conventional methods.

Funder

Data Foundry

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mining Real-World Big Data to Characterize Adverse Drug Reaction Quantitatively: Mixed Methods Study;Journal of Medical Internet Research;2024-05-03

2. Analysis of Stock Market Values Using an Optimal Probability with KNN;2024 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC);2024-01-27

3. Review of Various AI Based ADR Detection for Medical Diagnostic Applications;2024 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC);2024-01-27

4. A Science-Based Methodology Framework for the Assessment of Combination Safety Risks in Clinical Trials;Pharmaceutical Medicine;2023-04-26

5. Explainable Artificial Intelligence for Patient Safety: A Review of Application in Pharmacovigilance;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3