Affiliation:
1. Department of Mathematics, College of Sciences, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai 200444, P. R. China
Abstract
Let [Formula: see text] be a noncompact connected simple Lie group, and [Formula: see text] a Klein four-symmetric pair. In this paper, we show a necessary condition for the discrete decomposability of unitarizable simple [Formula: see text]-modules for Klein for symmetric pairs. Precisely, if certain conditions hold for [Formula: see text], there does not exist a unitarizable simple [Formula: see text]-module that is discretely decomposable as a [Formula: see text]-module. As an application, for [Formula: see text], we obtain a complete classification of Klein four symmetric pairs [Formula: see text], with [Formula: see text] noncompact, such that there exists at least one nontrivial unitarizable simple [Formula: see text]-module that is discretely decomposable as a [Formula: see text]-module and is also discretely decomposable as a [Formula: see text]-module for some nonidentity element [Formula: see text].
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献