HERMITIAN–EINSTEIN CONNECTIONS ON PRINCIPAL BUNDLES OVER FLAT AFFINE MANIFOLDS

Author:

BISWAS INDRANIL1,LOFTIN JOHN2

Affiliation:

1. School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

2. Department of Mathematics and Computer Science, Rutgers University at Newark, Newark, NJ 07102, USA

Abstract

Let M be a compact connected special flat affine manifold without boundary equipped with a Gauduchon metric g and a covariant constant volume form. Let G be either a connected reductive complex linear algebraic group or the real locus of a split real form of a complex reductive group. We prove that a flat principal G-bundle EG over M admits a Hermitian–Einstein structure if and only if EG is polystable. A polystable flat principal G-bundle over M admits a unique Hermitian–Einstein connection. We also prove the existence and uniqueness of a Harder–Narasimhan filtration for flat vector bundles over M. We prove a Bogomolov type inequality for semistable vector bundles under the assumption that the Gauduchon metric g is astheno-Kähler.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flat Higgs bundles over non-compact affine Gauduchon manifolds;Journal of Geometry and Physics;2022-05

2. Poisson metrics on flat vector bundles over non-compact curves;Communications in Analysis and Geometry;2019

3. Approximate Yang-Mills-Higgs metrics on flat Higgs bundles over an affine manifold;Communications in Analysis and Geometry;2014

4. Flat bundles on affine manifolds;Arabian Journal of Mathematics;2013-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3