Unimodality of Betti numbers for Hamiltonian circle actions with index-increasing moment Maps

Author:

Cho Yunhyung1ORCID

Affiliation:

1. Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea

Abstract

The unimodality conjecture posed by Tolman in [L. Jeffrey, T. Holm, Y. Karshon, E. Lerman and E. Meinrenken, Moment maps in various geometries, http://www.birs.ca/workshops/2005/05w5072/report05w5072.pdf ] states that if [Formula: see text] is a [Formula: see text]-dimensional smooth compact symplectic manifold equipped with a Hamiltonian circle action with only isolated fixed points, then the sequence of Betti numbers [Formula: see text] is unimodal, i.e. [Formula: see text] for every [Formula: see text]. Recently, the author and Kim [Y. Cho and M. Kim, Unimodality of the Betti numbers for Hamiltonian circle action with isolated fixed points, Math. Res. Lett. 21(4) (2014) 691–696] proved that the unimodality holds in eight-dimensional case by using equivariant cohomology theory. In this paper, we generalize the idea in [Y. Cho and M. Kim, Unimodality of the Betti numbers for Hamiltonian circle action with isolated fixed points, Math. Res. Lett. 21(4) (2014) 691–696] to an arbitrary dimensional case. We prove the conjecture in arbitrary dimension under the assumption that the moment map [Formula: see text] is index-increasing, which means that [Formula: see text] implies [Formula: see text] for every pair of critical points [Formula: see text] and [Formula: see text] of [Formula: see text], where [Formula: see text] is the Morse index of [Formula: see text] with respect to [Formula: see text].

Funder

Institute for Basic Science, Korea

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remark on the Betti numbers for Hamiltonian circle actions;Comptes Rendus. Mathématique;2021-03-17

2. On the realization of symplectic algebras and rational homotopy types by closed symplectic manifolds;Proceedings of the American Mathematical Society;2021-03-02

3. Hamiltonian S1-spaces with large equivariant pseudo-index;Journal of Geometry and Physics;2020-01

4. Hard Lefschetz property for Hamiltonian torus actions on $6$-dimensional GKM manifolds;Journal of Symplectic Geometry;2018

5. 12, 24 and beyond;Advances in Mathematics;2017-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3