Affiliation:
1. c/o Department of Mathematics, University of California, Berkeley, CA 94720, USA
Abstract
We establish a 3-manifold invariant for each finite-dimensional, involutory Hopf algebra. If the Hopf algebra is a group algebra G, the invariant counts homomorphisms from the fundamental group of the manifold to G. The invariant can be viewed as a state model on a Heegaard diagram or a triangulation of the manifold. The computation of the invariant involves tensor products and contractions of the structure tensors of the algebra. We show that every formal expression involving these tensors corresponds to a unique 3-manifold modulo a well-understood equivalence. This raises the possibility of an algorithm which can determine whether two given 3-manifolds are homeomorphic.
Publisher
World Scientific Pub Co Pte Lt
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献