Affiliation:
1. Dipartimento di Matematica, Via Dodecaneso 35, I-16146 Genova, Italy
2. Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556, USA
Abstract
Let ℒ be a very ample line bundle on ℳ, a projective manifold of dimension n ≥3. Under the assumption that Kℳ + (n-2) ℒ has Kodaira dimension n, we study the degree of the map ϕ associated to the complete linear system |2(KM + (n-2) L)|, where (M, L) is the first reduction of (ℳ, ℒ). In particular we show that under a number of conditions, e.g. n ≥ 5 or Kℳ + (n-3)ℒ having nonnegative Kodaira dimension, the degree of ϕ is one, i.e. ϕ is birational. We also show that under a mild condition on the linear system |KM + (n-2) L| satisfied for all known examples, ϕ is birational unless (ℳ, ℒ) is a three dimensional variety with very restricted invariants. Moreover there is an example with these invariants such that deg ϕ= 2.
Publisher
World Scientific Pub Co Pte Lt
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献