Affiliation:
1. Laboratoire de Mathématiques Jean Leray, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes, France
Abstract
A point q in a contact manifold is called a translated point for a contactomorphism ϕ with respect to some fixed contact form if ϕ(q) and q belong to the same Reeb orbit and the contact form is preserved at q. The problem of existence of translated points has an interpretation in terms of Reeb chords between Legendrian submanifolds, and can be seen as a special case of the problem of leafwise coisotropic intersections. For a compactly supported contactomorphism ϕ of ℝ2n+1 or ℝ2n × S1 contact isotopic to the identity, existence of translated points follows immediately from Chekanov's theorem on critical points of quasi-functions and Bhupal's graph construction. In this article we prove that if ϕ is positive then there are infinitely many nontrivial geometrically distinct iterated translated points, i.e. translated points of some iteration ϕk. This result can be seen as a (partial) contact analog of the result of Viterbo on existence of infinitely many iterated fixed points for compactly supported Hamiltonian symplectomorphisms of ℝ2n, and is obtained with generating functions techniques.
Publisher
World Scientific Pub Co Pte Lt
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献