ON ITERATED TRANSLATED POINTS FOR CONTACTOMORPHISMS OF ℝ2n+1 AND ℝ2n × S1

Author:

SANDON SHEILA1

Affiliation:

1. Laboratoire de Mathématiques Jean Leray, Université de Nantes, 2, rue de la Houssinière, 44322 Nantes, France

Abstract

A point q in a contact manifold is called a translated point for a contactomorphism ϕ with respect to some fixed contact form if ϕ(q) and q belong to the same Reeb orbit and the contact form is preserved at q. The problem of existence of translated points has an interpretation in terms of Reeb chords between Legendrian submanifolds, and can be seen as a special case of the problem of leafwise coisotropic intersections. For a compactly supported contactomorphism ϕ of ℝ2n+1 or ℝ2n × S1 contact isotopic to the identity, existence of translated points follows immediately from Chekanov's theorem on critical points of quasi-functions and Bhupal's graph construction. In this article we prove that if ϕ is positive then there are infinitely many nontrivial geometrically distinct iterated translated points, i.e. translated points of some iteration ϕk. This result can be seen as a (partial) contact analog of the result of Viterbo on existence of infinitely many iterated fixed points for compactly supported Hamiltonian symplectomorphisms of ℝ2n, and is obtained with generating functions techniques.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rabinowitz Floer homology for prequantization bundles and Floer Gysin sequence;Mathematische Annalen;2024-05-09

2. Rabinowitz Floer homology of negative line bundles and Floer Gysin sequence;Advances in Mathematics;2023-10

3. Remarks on the oscillation energy of Legendrian isotopies;Geometriae Dedicata;2023-08-01

4. Coisotropic Ekeland–Hofer capacities;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2022-09-05

5. An Arnold-type principle for non-smooth objects;Journal of Fixed Point Theory and Applications;2022-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3