FREE BROWNIAN MOTION AND EVOLUTION TOWARDS ⊞-INFINITE DIVISIBILITY FOR k-TUPLES

Author:

BELINSCHI SERBAN T.12,NICA ALEXANDRU2

Affiliation:

1. Institute of Mathematics of the Romanian Academy, Romania

2. Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract

Let [Formula: see text] be the space of non-commutative distributions of k-tuples of self-adjoint elements in a C*-probability space. For every t ≥ 0 we consider the transformation [Formula: see text] defined by [Formula: see text] where ⊞ and ⊎ are the operations of free additive convolution and respectively of Boolean convolution on [Formula: see text]. We prove that 𝔹s ◦ 𝔹t = 𝔹s + t, for all s, t ≥ 0. For t = 1, we prove that [Formula: see text] is precisely the set [Formula: see text] of distributions in [Formula: see text] which are infinitely divisible with respect to ⊞, and that the map [Formula: see text] coincides with the multi-variable Boolean Bercovici–Pata bijection put into evidence in our previous paper [1]. Thus for a fixed [Formula: see text], the process {𝔹t(μ)|t ≥ 0} can be viewed as some kind of "evolution towards ⊞-infinite divisibility". On the other hand, we put into evidence a relation between the transformations ⊞t and free Brownian motion. More precisely, we introduce a map [Formula: see text] which transforms the free Brownian motion started at an arbitrary [Formula: see text] into the process {𝔹t(μ)|t ≥ 0} for μ = Φ(ν).

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3