Affiliation:
1. Institute of Mathematics of the Romanian Academy, Romania
2. Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Abstract
Let [Formula: see text] be the space of non-commutative distributions of k-tuples of self-adjoint elements in a C*-probability space. For every t ≥ 0 we consider the transformation [Formula: see text] defined by [Formula: see text] where ⊞ and ⊎ are the operations of free additive convolution and respectively of Boolean convolution on [Formula: see text]. We prove that 𝔹s ◦ 𝔹t = 𝔹s + t, for all s, t ≥ 0. For t = 1, we prove that [Formula: see text] is precisely the set [Formula: see text] of distributions in [Formula: see text] which are infinitely divisible with respect to ⊞, and that the map [Formula: see text] coincides with the multi-variable Boolean Bercovici–Pata bijection put into evidence in our previous paper [1]. Thus for a fixed [Formula: see text], the process {𝔹t(μ)|t ≥ 0} can be viewed as some kind of "evolution towards ⊞-infinite divisibility". On the other hand, we put into evidence a relation between the transformations ⊞t and free Brownian motion. More precisely, we introduce a map [Formula: see text] which transforms the free Brownian motion started at an arbitrary [Formula: see text] into the process {𝔹t(μ)|t ≥ 0} for μ = Φ(ν).
Publisher
World Scientific Pub Co Pte Lt
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献