THE SASAKI–RICCI FLOW

Author:

SMOCZYK KNUT1,WANG GUOFANG2,ZHANG YONGBING1

Affiliation:

1. Leibniz Universität Hannover, Institut für Differentialgeometrie, Welfengarten 1, 30167 Hannover, Germany

2. Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, D-39016 Magdeburg, Germany

Abstract

In this paper, we introduce the Sasaki–Ricci flow to study the existence of η-Einstein metrics. In the positive case any η-Einstein metric can be homothetically transformed to a Sasaki–Einstein metric. Hence it is an odd-dimensional counterpart of the Kähler–Ricci flow. We prove its well-posedness and long-time existence. In the negative or null case the flow converges to the unique η-Einstein metric. In the positive case the convergence remains in general open. The paper can be viewed as an odd-dimensional counterpart of Cao's results on the Kähler–Ricci flow.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gap Theorems for Compact Quasi Sasaki–Ricci Solitons;Journal of Nonlinear Mathematical Physics;2024-09-10

2. Einstein-Type Metrics and Ricci-Type Solitons on Weak f-K-Contact Manifolds;Springer Proceedings in Mathematics & Statistics;2024

3. On the Existence of $$\eta $$-Einstein Contact Metric Structures;Trends in Mathematics;2024

4. Immersions of Sasaki–Ricci solitons into homogeneous Sasakian manifolds;Annals of Global Analysis and Geometry;2023-12-14

5. Vaisman manifolds and transversally Kähler–Einstein metrics;Annali di Matematica Pura ed Applicata (1923 -);2023-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3