Julia sets of complex Hénon maps

Author:

Guerini Lorenzo1,Peters Han1

Affiliation:

1. Korteweg de Vries Institute for Mathematics, University of Amsterdam, 1012 WX Amsterdam, The Netherlands

Abstract

There are two natural definitions of the Julia set for complex Hénon maps: the sets [Formula: see text] and [Formula: see text]. Whether these two sets are always equal is one of the main open questions in the field. We prove equality when the map acts hyperbolically on the a priori smaller set [Formula: see text], under the additional hypothesis of substantial dissipativity. This result was claimed, without using the additional assumption, in [J. E. Fornæss, The julia set of hénon maps, Math. Ann. 334(2) (2006) 457–464], but the proof is incomplete. Our proof closely follows ideas from [J. E. Fornæss, The julia set of hénon maps, Math. Ann. 334(2) (2006) 457–464], deviating at two points, where substantial dissipativity is used. We show that [Formula: see text] also holds when hyperbolicity is replaced by one of the two weaker conditions. The first is quasi-hyperbolicity, introduced in [E. Bedford and J. Smillie, Polynomial diffeomorphisms of [Formula: see text]. VIII. Quasi-expansion. Amer. J. Math. 124(2) (2002) 221–271], a natural generalization of the one-dimensional notion of semi-hyperbolicity. The second is the existence of a dominated splitting on [Formula: see text]. Substantially dissipative, Hénon maps admitting a dominated splitting on the possibly larger set [Formula: see text] were recently studied in [M. Lyubich and H. Peters, Structure of partially hyperbolic hénon maps, ArXiv e-prints (2017)].

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hénon Maps: A List of Open Problems;Arnold Mathematical Journal;2024-08-13

2. Structure of partially hyperbolic Hénon maps;Journal of the European Mathematical Society;2021-06-08

3. Topological and geometric hyperbolicity criteria for polynomial automorphisms of;Ergodic Theory and Dynamical Systems;2021-05-04

4. A closing lemma for polynomial automorphisms of C²;Astérisque;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3