Affiliation:
1. Humboldt-Universität zu Berlin, Institut Für Mathematik, Unter den Linden 6, 10099 Berlin, Germany
Abstract
We discuss the role of K3 surfaces in the context of Mercat's conjecture in higher rank Brill–Noether theory. Using liftings of Koszul classes, we show that Mercat's conjecture in rank 2 fails for any number of sections and for any gonality stratum along a Noether–Lefschetz divisor inside the locus of curves lying on K3 surfaces. Then we show that Mercat's conjecture in rank 3 fails even for curves lying on K3 surfaces with Picard number 1. Finally, we provide a detailed proof of Mercat's conjecture in rank 2 for general curves of genus 11, and describe explicitly the action of the Fourier–Mukai involution on the moduli space of curves.
Publisher
World Scientific Pub Co Pte Lt
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献