Algorithmic Trading and Post-Earnings-Announcement Drift: A Cross-Country Study

Author:

Chen Tao1

Affiliation:

1. Department of Finance and Business Economics, Faculty of Business Administration, University of Macau, Taipa, Macau

Abstract

Synopsis The research problem This study investigates whether algorithmic trading matters to post-earnings-announcement drift (PEAD) across 41 countries. Motivation The increasing importance of algorithms has sparked interest in how computer-triggered trades affect the formation of securities prices. Thus, a large body of research has emerged to probe the instantaneous impact of algorithmic trading on price discovery; however, little work explores the role of algorithms in efficient pricing of low-frequency financial statements. In addition, the literature on PEAD always highlights firm-level drivers of this phenomenon, whereas its country-level institutional determinants remain silent. The test hypotheses H1: Earnings-announcement algorithmic trading does not impact PEAD. H2: Country-level investor protection does not impact the association between earnings-announcement algorithmic trading and PEAD. H3: Country-level information dissemination does not impact the association between earnings-announcement algorithmic trading and PEAD. H4: Country-level disclosure requirements do not impact the association between earnings-announcement algorithmic trading and PEAD. Target population Various stakeholders include market traders, firm managers, regulators, and scholars. Adopted methodology Ordinary Least Square (OLS) Regressions. Analyses We follow Saglam [( 2020 ) Financial Management, 49, 33–67] to measure algorithmic trading using the transaction-level data. Based on a global sample covering 41 markets, we estimate the regression of PEAD on four proxies for algorithmic trading after considering firm-specific controls and fixed effects of country and year. Findings We find a negative and significant association between earnings-announcement algorithmic activity and PEAD. The documented relation retains despite addressing the endogeneity problem. Further analyses indicate that algorithmic participation mitigates investor disagreement, alleviates trader distraction, and reduces market friction, thus facilitating efficient pricing of earnings information. Finally, the impact of algorithmic trading on PEAD is more prominent in countries with stronger investor protection, faster information dissemination, and stricter disclosure requirements.

Funder

Universidade de Macau

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3