A SIMPLE PROOF OF THE FUNDAMENTAL THEOREM ABOUT ARVESON SYSTEMS

Author:

SKEIDE MICHAEL1

Affiliation:

1. Dipartimento S.E.G.e S., Università degli Studi del Molise, Via de Sanctis, 86100 Campobasso, Italy

Abstract

With every E0-semigroup (acting on the algebra of of bounded operators on a separable infinite-dimensional Hilbert space) there is an associated Arveson system. One of the most important results about Arveson systems is that every Arveson system is the one associated with an E0-semigroup. In these notes we give a new proof of this result that is considerably simpler than the existing ones and allows for a generalization to product systems of Hilbert module (to be published elsewhere).

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CP-semigroups and dilations, subproduct systems and superproduct systems: the multi-parameter case and beyond;Dissertationes Mathematicae;2023

2. Spatial Markov Semigroups Admit Hudson-Parthasarathy Dilations;Symmetry, Integrability and Geometry: Methods and Applications;2022-10-03

3. An essential representation for a product system over a finitely generated subsemigroup of $$\pmb {{\mathbb {Z}}}^{{\varvec{d}}}$$ Z d;Proceedings - Mathematical Sciences;2019-02-14

4. On the existence of E0-semigroups — the multiparameter case;Infinite Dimensional Analysis, Quantum Probability and Related Topics;2018-06

5. Additive units of product systems;Transactions of the American Mathematical Society;2017-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3