Affiliation:
1. Statistics and Mathematics Unit, Indian Statistical Institute, R. V. College Post, Bangalore 560059, India
Abstract
Bures had defined a metric on the set of normal states on a von Neumann algebra using GNS representations of states. This notion has been extended to completely positive maps between C*-algebras by Kretschmann, Schlingemann and Werner. We present a Hilbert C*-module version of this theory. We show that we do get a metric when the completely positive maps under consideration map to a von Neumann algebra. Further, we include several examples and counter examples. We also prove a rigidity theorem, showing that representation modules of completely positive maps which are close to the identity map contain a copy of the original algebra.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mathematical Physics,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献