Microstructure, domain structure, ferroelectric and piezoelectric properties of textured bismuth-containing ceramics

Author:

Sitalo E. I.1ORCID,Bunina O. A.1,Smotrakov V. G.1,Malomyzheva N. V.1,Boldyrev N. A.1

Affiliation:

1. Research Institute of Physics, Southern Federal University, No. 194 Stachki Avenue, Rostov-on-Don 344090, Russia

Abstract

In this report, the processes of texture formation in grain-oriented ferroelectric ceramics based on layer-structured ferroelectric Bi4Ti3O2 (LSBT) prepared by hot forging method are considered. The microstructural and X-ray methods revealed the axial textured formation in ferroelectric ceramic that are used to estimate the orientation factor of ceramics. For the first time, the domain structure changes when poling the anisotropic ferroelectric ceramics are investigated. The anisotropy of electromechanical, piezoelectric and ferroelectric properties of ferroelectric ceramics due to the crystal texture existence in it is studied. The aim of this study is to study the processes of crystalline texture formation in polycrystalline BLSF and to establish the dependence of the electrophysical properties of ceramics on the degree of texturing. Ceramics were textured using the hot stamping (HS) method developed at the Research Institute of Physics. The mechanism of the method is that the workpiece is subjected to uniaxial pressure and free radial deformation occurs due to the plastic flow of the material until the workpiece fills the free volume of the mold, which is created by placing the workpiece in the mold with a gap. The study of the microstructure of ceramics showed that an increase in the firing temperature in the range 950–1050[Formula: see text]C causes a sharp decrease in porosity and increases the density to 7.95 g/[Formula: see text], which is 98% of theoretical. An X-ray analysis was performed and microstructural studies were carried out, which revealed the formation of an axial texture in ceramics. The features of the switching processes of textured ceramics are revealed. The characteristics of the polarization switching of ceramics in the directions parallel and perpendicular ([Formula: see text]) of the pressure axis during hot processing were obtained from the dielectric hysteresis [Formula: see text]([Formula: see text]) loops, i.e., axis axial texture. The [Formula: see text]-cut ceramics are characterized by a more complete polarization switching, which is associated with the additional orientation of the (001) crystallographic planes in the textured material, as well as the presence of a threshold switching field. In the temperature range from -196 to + 600[Formula: see text]C, the anisotropy of the electro physical properties of ceramics due to the presence of a crystalline texture in it was studied. The dielectric constant, electrical conductivity, piezoelectric and elastic coefficients were measured for sections of ceramics of different orientations relative to the axis of the texture. The anisotropy of the dielectric constant and electrical conductivity manifests itself weakly at room temperature and increases sharply when approaching the Curie temperature. In the temperature range +20–400[Formula: see text]C, the high thermal stability of the piezoelectric module [Formula: see text], measured by the quasistatic method, was established.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3