Surface potential uniformity and sensitivity of large-area PTFE electret discs of different thicknesses produced by a modified corona poling rotating system for dosimetry applications

Author:

Komeijani A.1ORCID,Bagheri H.1,Shekarchi B.1

Affiliation:

1. AJA Radiation Sciences Research Center (ARSRC), Science and Research Branch, AJA University of Medical Sciences, Tehran, Iran

Abstract

In this study, large-area (6-cm diameter) Teflon polytetrafluoroethylene (PTFE) discs of different thicknesses (0.2-, 0.5- and 1 -mm) were negatively and positively charged by using the “modified single point-to-plane corona poling rotating system”. The effects of some crucial parameters of the PTFE disc as well as the modified corona poling rotating system on the PTFE surface potential uniformity such as: (a) PTFE disc thickness, (b) PTFE disc polarity and (c) needle-to-PTFE disc distance were successfully reported. Accordingly, closer needle-to-PTFE disc distance, positive charging mode and thinner PTFE disc provided a better PTFE surface potential uniformity. However, the effects of PTFE charge polarity and needle distance on the electrostatic charge potential uniformity were much more remarkable in comparison with the effects of PTFE thickness. Additionally, the surface potential distribution profiles of charged PTFE discs were totally flat and independent of the PTFE thickness at 5- and 13-[Formula: see text]mm needle distances for the negative and positive charging modes, respectively. At the optimized charging conditions, large-area PTFE electret disc (0.5-mm-thick) with positive uniform surface charge potential especially at the edges up to [Formula: see text] 1.8[Formula: see text]kV with stability up to 77 days studied was produced by applying a new multiple heat treatment protocol to the PTFE disc for radon dosimetry. As also observed in this study, the sensitivity of PTFE electret dosimeters to a defined radon gas concentration increases as the PTFE thickness increases. Meanwhile, 0.5-mm-thick PTFE electret disc produced was selected to be used as a high quality electret dosimeter with acceptable and superior parameters for different applications in particular medium-term radiation dosimetry in both low and high dose rate ionizing radiation fields.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3