Dielectric properties of bismuth-containing pyrochlores: A comparative analysis

Author:

Talanov M. V.1ORCID,Glazunova E. V.1,Kozlov V. I.2,Kubrin S. P.1,Bush A. A.2,Talanov V. M.3,Kamentsev K. E.2

Affiliation:

1. Research Institute of Physics, Southern Federal University, av. Stachki 193, Rostov-on-Don, 344090, Russia

2. Research Institute of Solid State Electronics Materials, MIREA – Russian Technological University (RTU MIREA), 5th Street of Sokolinaya Gora 22, Moscow, 119454, Russia

3. Technological Department, Platov South-Russian State Polytechnic University (NPI), Prosvescheniya Str. 132, Novocherkassk, 346428, Russia

Abstract

The comparative analysis of the dielectric properties of bismuth-containing pyrochlores with different manifestation of atomic order/disorder was carried out. We examined the dielectric properties (including behavior in electric fields) of two pyrochlore compounds: BZN (presumably a composition close to Bi[Formula: see text]Zn[Formula: see text]Nb[Formula: see text]O[Formula: see text] ceramics with chemical disorder in both A and B cation sublattices and Bi2Ti2O7 single crystal with fully chemical ordered structure. The fundamental differences between the dielectric properties of the BZN ceramics and Bi2Ti2O7 single crystal were shown. In particular, in the dielectric relaxation behavior (which cannot be described via Arrhenius law in the Bi2Ti2O[Formula: see text] or in the influence of the electric fields on the dielectric permittivity (splitting of the field-cooled and zero-field-cooled behaviors was observed for Bi2Ti2O7 below estimated freezing temperature). The results of this study highlights the special role of Bi2Ti2O7 as a candidate material for studying aspects of geometric frustration related with pyrochlore structure in non-magnetic medium and specifies the future directions of research.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of Russia

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3