DOMAIN BOUNDARIES IN FERROELECTRICS

Author:

SIDORKIN A. S.1

Affiliation:

1. Physical Department, Voronezh State University, University Sq., 1, Voronezh 394006, Russia

Abstract

Present paper is a brief review of the information and existing approaches in the study of domain walls in ferroelectric materials. In the framework of the continuum approach the structure of 180° and 90° domain walls was considered. The results of calculation of width and energy of domain walls were compared with those obtained from ab initio calculations and experimental data. Factors conducive to the broadening of domain boundaries are discussed such as profile temperature fluctuation, capture to nearby defects and surface impact. The structure of charged domain walls was considered under the conditions of screening by free carriers. The structure and characteristics of the moving domain wall are discussed: the local effective mass, the top speed and the mobility. The lateral motion of domain walls in the lattice potential relief in the general case creeping mode is investigated. The factors that control the macroscopic movement of domain walls are studied: an effective quasi-elasticity coefficient and nonlocal effective mass associated with involvement in the movement of the elastic medium surrounding wall. Natural frequency of translational oscillations of domain boundaries and the influence of the size effect were estimated. The interaction of domain walls with different types of defects and their effect on the deformation profile and features of the motion of domain walls are considered.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3