Electric field-induced phase transition from the glasslike to paraelectric phase and dielectric spectra hardening in PMN single crystal

Author:

Koroleva E.1ORCID,Molokov A.1,Vakhrushev S.1

Affiliation:

1. Ioffe Institute, Polytekhnicheskaya 26, 194021, St.-Petersburg, Russia

Abstract

One of the key points in the physics of the relaxors is their response to the applied DC field. Many studies of this topic were made, in particular on the influence of the field on the dielectric properties. However, practically, in all the cases, the measurements were performed at a fixed frequency and usually with the change in the temperature at the fixed field strength. In this paper, we report the evolution of the dielectric spectra at low frequencies (0.1 Hz [Formula: see text] 1 kHz) at fixed temperature 246 K on changing the DC electric field applied in (111) from 1 kV to 7 kV. Cole-Cole function was used to describe the spectra and the field dependences of the mean relaxation time [Formula: see text], the oscillation strength [Formula: see text] and the width parameter [Formula: see text] were determined. The obtained [Formula: see text]([Formula: see text]) and [Formula: see text] [Formula: see text]([Formula: see text]) provide evidence of the field-induced transition from the nonpolar glass-like phase to the nonpolar paraelectric phase at around 1.5 kV/cm. In the paraelectric phase, very fast hardening of the spectra was observed with [Formula: see text] changing from 10 s to about [Formula: see text]s. The performed analysis demonstrated that the earlier reported positive C-V effect is completely determined by the spectra hardening, while [Formula: see text][Formula: see text] does not show any change in the glass-like phase and monotonously decreases with a field increase in the paraelectric state. For complete understanding of the microscopic origin of the observed phenomena, a detailed study on the short-and long-range structures at the same condition is necessary.

Funder

Russian Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3